Predictive Recirculation: A model of encoding and replay of sequences in a recurrent neural network

Mia Cameron, Homero Esmeraldo Computational Neurobiology Laboratory Salk Institute for Biological Studies December 16th, 2022

What are the computational processes underlying sequence storage and replay in the hippocampus?

Specialized connectivity patterns at different regions may facilitate different types of computation

CA3 may store sequences in a recurrent network

Modelling CA3 as an artificial Recurrent Neural Network (RNN)

Each element of a sequence is represented as a static pattern in the RNN

During learning, each pattern is an external input to the network

Asymmetric connectivity allows the network to recall the entire sequence, given the first element

How can these synaptic weights be learned in a biologically plausible way?

Deriving a local recurrent learning rule:

 $\Delta W_{ij} = -\lambda \frac{\partial E_i(t)}{\partial W_{ij}}$ Gradient descent at each time step

Network dynamics:

$$\widehat{x}_i(t) = \sigma\left(\sum_j W_{ij} x_i(t-1)\right)$$

Error function:

$$E_i(t) = \frac{1}{2} \left(x_i(t) - \widehat{x_i}(t) \right)^2$$

$$\begin{aligned} \frac{\partial E_i(t)}{\partial W_{ij}} &= \left(x_i(t) - \hat{x}_i(t) \right) \frac{\partial \hat{x}_i(t)}{\partial W_{ij}} \\ &= \left(x_i(t) - \hat{x}_i(t) \right) \sigma' \left(\hat{x}_i(t) \right) \left(x_j(t-1) + \sum_{k \neq j} W_{ik} \frac{\partial x_k(t-1)}{\partial W_{ij}} \right) \end{aligned}$$

Restricted to spatially and temporally local information:

$$= \left(x_i(t) - \widehat{x}_i(t)\right) \sigma'\left(\widehat{x}_i(t)\right) x_j(t-1)$$

Recurrent Learning Rule:

$$\Delta W_{ij} = -\lambda \left(x_{\rm i}(t) - \hat{x}_{i}(t) \right) \sigma' \left(\hat{x}_{i}(t) \right) x_{j}(t-1)$$

Sequences may be recoded to circumvent locally restricted recurrent learning rule

Predictive recirculation combines an autoencoder and RNN

Recirculation autoencoder learning procedure:

 ΔW^f

Hinton, G. E., & McClelland, J. (1987). Learning representations by recirculation. In *Neural information processing systems*.

 ΔW^g

g

hidden

input

Network dynamics: Synaptic input to unit i $s_i = \rangle$ $W_{ij}u_j$ **Logistic activation** $u_i = \sigma(s_i) = \frac{1}{1 + e^{-s_i}}$ Temporal $u_i^{t} = \lambda u_i^t + (1 - \lambda)\sigma(u_i^{t+1})$

$$\Delta W_{ij}^g = \epsilon h_j (x_i - \hat{x}_i)$$

Combined Learning Procedure:

Recurrent Learning Rule:

Recirculation Learning Rule

T = 0

 x_0

T = t

Recurrent Learning Rule:

Recirculation Learning Rule

Recalling a sequence, given the first element:

$$\Delta W_{ij}^r \coloneqq \epsilon \left(h_i^t - p_i^t \right) h_j^{t-1}$$

Visible-to-hidden $\Delta W_{ij}^{f} = \epsilon \hat{x}_{j} (h_{i} - \hat{h}_{i})$

Hidden-to-visible

$$\Delta W_{ij}^{g} = \epsilon h_j (x_i - \hat{x}_i)$$

Network dynamics:

Binary sequences can be encoded and replayed

Sequential MNIST

Moving MNIST

Sequences with high overlap between elements can also be learned

Summary

- Predictive Recirculation provides a biologically plausible model of sequence storage and replay in the hippocampus
- Encoder and recurrent learning rules are temporally and spatially local
- Recoding at different regions may provide a mechanism for

circumventing local information restrictions in the recurrent network

Acknowledgements

- Prof. Terrence Sejnowski
- Homero Esmeraldo
- Yusi Chen
- Vikrant Jaltare
- All members of CNL

