A biologically-plausible learning rule using reciprocal feedback connections

Artificial neural networks are frequently used to model neural systems, and have been shown to re-
capitulate features of biological networks, including in the hippocampus [1] and visual cortex [2] [3].
However, despite it’'s success in neural modelling, the predominant learning algorithm, backpropaga-
tion, has long been considered biologically implausible [4]. One reason is the weight-transport prob-
lem - or the problem of how a global error signal can be accurately transmitted across the network to
minimize the error resulting from each layer’s parameters. Previous solutions to the weight-transport
problem have proposed using a separate, error-feedback network to transport an error signal across
layers [5]. However, more recent experimental work indicates that cortical feedback connections are
more likely to be involved in reconstructing lower-level activity based on activity from higher layers,
rather than being exclusively used to transmit top-level error [6] [7] [8]. Under the predictive coding
framework, the bidirectional, cortical processing hierarchy is more appropriately modeled as a multi-
layered autoencoder [9]. Here, we attempt to unify these two views by showing how autoencoder-
like, inverse feedback connections may be used to minimize top-level error in neural networks. Our
proposed mechanism, Reciprocal Feedback, consists of two contributions: first we show how a mod-
ification of the Recirculation autoencoder algorithm [10] is equivalent to learning the Moore-Penrose
pseudoinverse. Then, we will show how, using a Newton-like method [11], locally-learned pseu-
doinverse feedback connections may be used to facilitate an alternative, more biologically-realistic
optimization method to gradient descent, by relying on the reciprocal of the forward network rather
than its gradient. Overall, we provide a mathematical framework for understanding how the hierar-
chical, autoencoder-like feedback connections observed in the layers of the cortex may additionally
be used as a mechanism for minimizing a global error signal, using only local activity.

Local learning of each layer pseudoinverse.
First, we show that a modified version of the Re-
circulation algorithm is capable of learning a pair
of pseudoinverse forward (U) and feedback (V)
connections, when trained on random, mean-
zero noise inputs (y). A theorem described in
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converges to A* (where A* is the pseudoinverse
of A). When we remove the nonlinearity from the
Figure 1: Locally leaming 'Fhe Moore-Pen_rose pseudoin- dynamics of the Recirculation algorithm and av-
verse, through a qulﬁcatlon of the Recwcul;atlon algo- erage over mean-zero inputs, we find that the
rithm. A. The Frobenius norm between U and V* decreases } ) )
exponentially (and vice versa). In this simulation, the net- learning rules for U and V are nearly identical to
work is linear, and includes decay. U and V were randomly the iterative computation of the pseudoinverse
initialized with a low condition number, and trained con- (proof omitted). Intuitively, the pseudoinverse
currently. B. Learning ijnamics of U apd V within a sin-  ~gn pe thought of as the linear, analytical equiv-
gle layer, expanded horizontally across time to show recur- alent of an autoencoder feedback connection .
rence. Referenced from [10]. R .
The activations of each layer may be approxi-
mately reconstructed using the activations of the layer above it - similarly to the dynamics observed
experimentally in the cortex. Physically, this learning procedure may be implemented during a "sleep”
phase, in which random noise inputs are projected to each layer, so that the forward and feedback
connections may align. A similar, biologically-plausible two-phase learning procedure was previously
used in the wake-sleep algorithm [13].
Training the whole network. Using each locally-learned, layer-wise pseudoinverse, we now can
minimize a global error signal across the whole, multi-layered network. To train the whole network
we will be considering a standard, fully-connected, feedforward architecture, with the final-layer error
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vector defined as: e = h; — h,". We denote each layer’s pre-activation vector as a, = W;h._,, and its
activation vector as h; = o(a;). The Jacobian of the error with respect to the layer parameter W, can
be derived using the recursive expression ]5,,{ =(a_,® jﬁl), and the Jacobian with respect to the acti-
vation vector h; as ]hl = ]EMDJWM. Informally, the Newton-like method we use [11] states that under
certain conditions: if F : (X, B/(yo)) — R™ is a vector function with Jacobian A, with left reciprocal
T, then there exists a solution y* (such that TF(x, y*) = 0) which can be obtained using the iteration:
Vi = Vi — TF(X, ;). By using the pseudoinverse at each layer, we get recursive expressions for the
activation reciprocal: B, = W;,,D; B.., and the parameter reciprocal: B; = (a[_1 ® Bl). Using these left
reciprocals, we can minimize error by shifting each weight matrix parameter in the direction defined
by &}y, o Bie(x, Wi)a[_,, resulting in the update rule: W{*' = W — \d}, (where X is a scalar learning rate).
Overall, we show how locally-learned, autoencoder-like, pseudoinverse connections can be used to
minimize a global error signal, using a Newton-like optimization method - suggesting a biologically-
plausible alternative to backpropagation that is more aligned with the structure expected under the
predictive coding framework. Computational simulations show a similar asymptotic performance to
backpropagation, in fewer iterations than comparable biologically-plausible learning rules, such as
Random Feedback Alignment [14].
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Figure 2: A. Training is split into two phases: a wake phase, where inputs are propa- algorithm [16], in which the
gated through the whole network and the global, top-layer error is minimized; and "sleep" phase learns the
a sleep phase, where forwa_rql an.d feedback vyelghts are aligned to the pseudoin- weight transpose at each
verse of each other. B. In-silico implementation on feedforward, fully-connected laver - r It . |
networks trained on classification tasks. All three learning rules were trained with ye . eSl’_' Ing In a closer
the same hyperparameters, and reach a similar asymptotic error. Reciprocal feed- approximation to backprop-
back converges after fewer iterations than the Random feedback algorithm [12] in agation, but less aligned

both MNIST and CIFAR-10. with the autoencoder-like struc-

ture expected. Given the
use of pseudoinverses in the Newton-like method, it may be supposed that it is related to Gauss-
Newton optimization. However, while Gauss-Newton optimization uses the exact pseudoinverse of
the whole network, we use a composition of each layer’s pseudoinverse to form a non-unique, left-
reciprocal. However, this method is still understudied in the context of neural networks, and may
follow a different learning trajectory to gradient descent.
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