
A biologically-plausible learning rule using reciprocal feedback connections

Artificial neural networks are frequently used to model neural systems, and have been shown to re-
capitulate features of biological networks, including in the hippocampus [1] and visual cortex [2] [3].
However, despite it’s success in neural modelling, the predominant learning algorithm, backpropaga-
tion, has long been considered biologically implausible [4]. One reason is the weight-transport prob-
lem - or the problem of how a global error signal can be accurately transmitted across the network to
minimize the error resulting from each layer’s parameters. Previous solutions to the weight-transport
problem have proposed using a separate, error-feedback network to transport an error signal across
layers [5]. However, more recent experimental work indicates that cortical feedback connections are
more likely to be involved in reconstructing lower-level activity based on activity from higher layers,
rather than being exclusively used to transmit top-level error [6] [7] [8]. Under the predictive coding
framework, the bidirectional, cortical processing hierarchy is more appropriately modeled as a multi-
layered autoencoder [9]. Here, we attempt to unify these two views by showing how autoencoder-
like, inverse feedback connections may be used to minimize top-level error in neural networks. Our
proposed mechanism, Reciprocal Feedback, consists of two contributions: first we show how a mod-
ification of the Recirculation autoencoder algorithm [10] is equivalent to learning the Moore-Penrose
pseudoinverse. Then, we will show how, using a Newton-like method [11], locally-learned pseu-
doinverse feedback connections may be used to facilitate an alternative, more biologically-realistic
optimization method to gradient descent, by relying on the reciprocal of the forward network rather
than its gradient. Overall, we provide a mathematical framework for understanding how the hierar-
chical, autoencoder-like feedback connections observed in the layers of the cortex may additionally
be used as a mechanism for minimizing a global error signal, using only local activity.

Figure 1: Locally learning the Moore-Penrose pseudoin-
verse, through a modification of the Recirculation algo-
rithm. A. The Frobenius norm between U and V+ decreases
exponentially (and vice versa). In this simulation, the net-
work is linear, and includes decay. U and V were randomly
initialized with a low condition number, and trained con-
currently. B. Learning dynamics of U and V within a sin-
gle layer, expanded horizontally across time to show recur-
rence. Referenced from [10].

Local learning of each layer pseudoinverse.
First, we show that a modified version of the Re-
circulation algorithm is capable of learning a pair
of pseudoinverse forward (U) and feedback (V)
connections, when trained on random, mean-
zero noise inputs (y). A theorem described in
[12] states that for a low-condition number ma-
trix A, starting from a matrix X0 satisfying X0A =
(X0A)T, the sequence generated by:

Xt+1 − Xt = Xt − XtAXt

converges to A+ (where A+ is the pseudoinverse
of A). When we remove the nonlinearity from the
dynamics of the Recirculation algorithm and av-
erage over mean-zero inputs, we find that the
learning rules for U and V are nearly identical to
the iterative computation of the pseudoinverse
(proof omitted). Intuitively, the pseudoinverse
can be thought of as the linear, analytical equiv-
alent of an autoencoder feedback connection .
The activations of each layer may be approxi-

mately reconstructed using the activations of the layer above it - similarly to the dynamics observed
experimentally in the cortex. Physically, this learning procedure may be implemented during a "sleep"
phase, in which random noise inputs are projected to each layer, so that the forward and feedback
connections may align. A similar, biologically-plausible two-phase learning procedure was previously
used in the wake-sleep algorithm [13].
Training the whole network. Using each locally-learned, layer-wise pseudoinverse, we now can
minimize a global error signal across the whole, multi-layered network. To train the whole network
we will be considering a standard, fully-connected, feedforward architecture, with the final-layer error



vector defined as: e = hL − hL∗. We denote each layer’s pre-activation vector as al = Wlhl−1, and its
activation vector as hl = σ(al). The Jacobian of the error with respect to the layer parameter Wl can
be derived using the recursive expression JEWl

= (al−1 ⊗ JEhl), and the Jacobian with respect to the acti-
vation vector hl as JEhl = J

E
hl+1DσWl+1. Informally, the Newton-like method we use [11] states that under

certain conditions: if F : (X0,Br(y0)) → Rm is a vector function with Jacobian A, with left reciprocal
T, then there exists a solution y∗ (such that TF(x, y∗) = 0) which can be obtained using the iteration:
yt+1 = yt − TF(x, yt). By using the pseudoinverse at each layer, we get recursive expressions for the
activation reciprocal: Bl = W+

l+1D+
σBl+1, and the parameter reciprocal: Bl =

(
a+l−1 ⊗ Bl

)
. Using these left

reciprocals, we can minimize error by shifting each weight matrix parameter in the direction defined
by δtWl

∝ Ble(x,Wl)aTl−1, resulting in the update rule: Wt+1
l = Wt

l−λδtWl
(where λ is a scalar learning rate).

Overall, we show how locally-learned, autoencoder-like, pseudoinverse connections can be used to
minimize a global error signal, using a Newton-like optimization method - suggesting a biologically-
plausible alternative to backpropagation that is more aligned with the structure expected under the
predictive coding framework. Computational simulations show a similar asymptotic performance to
backpropagation, in fewer iterations than comparable biologically-plausible learning rules, such as
Random Feedback Alignment [14].

Figure 2: A. Training is split into two phases: a wake phase, where inputs are propa-
gated through the whole network and the global, top-layer error is minimized; and
a sleep phase, where forward and feedback weights are aligned to the pseudoin-
verse of each other. B. In-silico implementation on feedforward, fully-connected
networks trained on classification tasks. All three learning rules were trained with
the same hyperparameters, and reach a similar asymptotic error. Reciprocal feed-
back converges after fewer iterations than the Random feedback algorithm [14] in
both MNIST and CIFAR-10.

Related work. Our
work is related to the Tar-
get Propagation algorithm
[15], in the sense that each
layer can be thought of
as an autoencoder. How-
ever, instead of propagat-
ing auxillary "targets" from
the top layer, we propa-
gate the error backwards di-
rectly. Another biologically-
plausible algorithm which
utilizes a "wake" and "sleep"
phase is the weight-mirror
algorithm [16], in which the
"sleep" phase learns the
weight transpose at each
layer - resulting in a closer
approximation to backprop-
agation, but less aligned
with the autoencoder-like struc-
ture expected. Given the

use of pseudoinverses in the Newton-like method, it may be supposed that it is related to Gauss-
Newton optimization. However, while Gauss-Newton optimization uses the exact pseudoinverse of
the whole network, we use a composition of each layer’s pseudoinverse to form a non-unique, left-
reciprocal. However, this method is still understudied in the context of neural networks, and may
follow a different learning trajectory to gradient descent.
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